

Tetrahedron Letters 41 (2000) 4709-4711

A novel method for the synthesis of aromatic E- β -chlorovinylketones

Jose Juan Conde, a,* Michael Martuccia and Mark Olsenb

^aDepartment of Synthetic Chemistry, SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, PO Box 1539, King of Prussia, PA 19406, USA

^bAnalytical Sciences, SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, PO Box 1539, King of Prussia, PA 19406, USA

Received 31 March 2000; revised 14 April 2000; accepted 17 April 2000

Abstract

The reaction of aromatic acetylenic ketones with aqueous HCl promoted by catalytic FeSO₄ gave a E,Zmixture of β -chlorovinylketones which isomerized almost exclusively to the E- β -isomer upon heating © 2000 Elsevier Science Ltd. All rights reserved.

β-Chlorovinylketones have proved to be versatile and valuable materials in organic synthesis. ¹ The synthesis of β-chlorovinylketones has been performed under a diversity of conditions ² although a mixture of E and Z isomers is often obtained. Recent methods have used LiCl for the preparation of such compounds but the yields were poor and the selectivity low. ^{2d} Gaseous HCl is also known to afford E or Z-chlorovinylketones depending on the reaction temperature. ^{2e}

We report herein a novel and cost effective method for the preparation of aromatic β -chlorovinylketones from terminal acetylenic ketones that were readily prepared from the corresponding acid chlorides.³ Thus the reaction of aromatic acetylenic ketones (Eq. (1)) with aqueous HCl in the presence of a catalytic amount of FeSO₄ in acetic acid as solvent afforded the corresponding mixture of *E*,Z-chlorovinylketones which was easily converted by heating the reaction mixture for several hours, exclusively to the *E*-isomer 3 (Table 1). We have observed that prior to heating, the *Z*-isomer 2 was the major product formed along with a small amount of 3 which is the thermodynamically more stable compound.^{2e}

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(00)00702-4

^{*} Corresponding author.

Entry	R group	Yield ^a	Ratio (2: 3)b	Conditions
3a	Cl NO ₂	65%	1: 99	18 h, 80°C
3 b		70%	1: 99	6 h, 60°C
3с	CI	73%	1: 99	5 h, 50°C
3d	MeO-	78%	1:99	5 h, 35°C
3e	MeO MeO	74%	1:99	3 h, 75°C
3f		64%	1:99	3 h, 80°C
3g	CI(CH ₂) ₄ -	64% ^c	1: 2.5	24 h, 80°C

Table 1 Preparation of E,β -chlorovinylketones 3a-g

A variety of acetylenic ketones were submitted to these reaction conditions and the results are summarized in Table 1. While aromatic ketones gave satisfactory results, substrates with aliphatic \mathbf{R} groups showed little or no formation of the desired product. When $\mathbf{R} = \text{Cl-}(CH_2)_4$ (entry 3g), the reaction proceeded at 80°C for 24 h to yield a mixture of isomers which did not undergo isomerization.

When the substates depicted in Table 1 were treated with aqueous HCl (1N) in AcOH in the absence of FeSO₄ no reaction took place which suggests that Fe(II) coordinates with the carbonyl group and/or the triple bond activating the alkyno ketones. On the other hand, equimolecular or excess amount of Fe(II) increased the rate of the reaction.

Typical preparation of β-E-chlorovinylketones: to a stirring solution of acetylenic ketone (Table 1) in acetic acid was added 1.1 equivalents of aqueous HCl (1N) at room temperature followed by 0.1 equiv. of FeSO₄. The reaction mixture was then heated (see conditions; Table 1) for several hours. When completed, water was added followed by EtOAc at ambient temperature. The organic layer was separated and washed with H_2O . After drying over MgSO₄, the solution was concentrated under vacuum to give a residue which was purified by flash chromatography (EtOAc:hexane, 1:10).

In conclusion, we have described an efficient and cost effective method for the synthesis of aromatic β -chlorovinylketones from the acetylenic precursors.

Acknowledgements

We thank Dr. Andrew Allen for 400 MHz ¹H NMR measurements.

References

1. (a) Pohland, A.; Benson, W. Chem. Rev. 1966, 66, 161. (b) Corey, E. J.; Beames, B. J. Am. Chem. Soc. 1972, 94, 7210. (c) Bhalero, T.; Devalla, S. Synth. Commun. 1993, 23, 2213.

^a Yield of isolated, chromatographically pure β-chlorovinyketones. ^b ratio determined by ¹H-NMR of the crude mixture. ^c yield of the *Z*, *E* mixture.

- (a) Taniguchi, M.; Kobayashi, S.; Nakagawa, M.; Hino, T. Tetrahedron Lett. 1986, 27, 4763. (b) Fujisawa, T.; Tanaka, A.; Ukaji, Y. Chem. Lett. 1989, 1255. (c) Price, C.; Pappalardo, J. J. Am. Chem. Soc. 1950, 2613. (d) Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709. (e) Calalchi, B.; Landini, D.; Montanari, F. J. Chem. Soc. C 1969, 1204.
- 3. Karpf, M.; Huguet, J.; Dreiding, A. Helv. Chim. Acta 1982, 65, 13.
- 4. All compounds were characterized by spectroscopic and analytical methods.